User Tools

Site Tools


backtest_w_python

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
backtest_w_python [2025/03/23 08:31] brunobacktest_w_python [2025/03/27 17:02] (current) – [Sinon] bruno
Line 270: Line 270:
  
  
-==== Sinon ==== 
  
-Un vieux code de 2022 (si pas plus). Chrypowatch n'existe plus, c'est dire :-) 
- 
-<code python> 
-# coding: utf-8 
-import requests 
-import numpy as np 
-import pandas as pd 
-  
-import talib 
-  
-url = 'https://api.cryptowat.ch/markets/kraken/btceur/ohlc' 
-ohlc = requests.get(url).json()['result'][str(12*60*60)] 
-columns = ['time','open','high','low','close','volume','count'] 
-df = pd.DataFrame(ohlc, columns=columns).astype(float) 
-df = df.iloc[-1000:] 
- 
-df['RSI'] = talib.RSI(df['close'], timeperiod=14) 
-#df['RSI'] = df.RSI.fillna(value=df.RSI.loc[14]) 
-df['long'] = talib.SMA(df.close, timeperiod=200) 
-#df['long'] = df.long.fillna(value=df.long.loc[200]) 
-df['short'] = talib.SMA(df.close,timeperiod=14) 
-#df['short'] = df.short.fillna(value=df.short.loc[14]) 
-df['trend'] = df.long < df.short 
-# signal 
-df['sig_in'] = (df.RSI > 60) & df.trend 
-df['sig_out'] = (df.RSI < 40)# | 1-df.trend 
-#df['sig_in'] = (df.RSI.shift() < 70) & (df.RSI > 70) 
-#df['sig_out'] = (df.RSI.shift() > 30) & (df.RSI < 30) 
-#df['sig_in'] = (df.RSI.shift() < 25) & (df.RSI > 25) 
-#df['stoploss'] = df.low.rolling(5).min().where(df.sig_in==1).ffill() 
-#df['sig_out'] = ((df.RSI.shift() > 75) & (df.RSI < 75)) | ((df.RSI.shift()>25) & (df.RSI<25)) | (df.close < df.stoploss) 
- 
-#df['signal'] = df.sig_in.where(df.sig_in).fillna(1-df.sig_out.where(df.sig_out)).ffill() 
-#df['sig_out'].loc[0] = True 
-#df['signal'] = (1-df.sig_out.where(df.sig_out)).fillna(df.sig_in.where(df.sig_in)).ffill()# * df.trend  
- 
-df['sig_0'] = df.sig_in.astype(int) - df.sig_out.astype(int) 
-df['sig_1'] = df.sig_0.where(df.sig_0!=0).ffill() 
-df['signal'] = df.sig_1 > 0 
-# Rendements 
-df['close'] = df.close.replace(to_replace=0, method='ffill') 
-df['r_0'] = df.close / df.close.shift() 
-df['r_strat'] = np.where(df.signal.shift(), df.r_0, 1) 
-df['r_fee'] = np.where(df.signal.shift() + df.signal == 1, 1-0.0025, 1) 
-# tronquage datafame 
-#df = df.iloc[-700:] 
-# Rendement cumulé 
-df['R_net'] = (df.r_strat * df.r_fee).cumprod() 
-# Graphiques 
-from bokeh.plotting import figure,show 
-from bokeh.layouts import column,row 
-p1 = figure(height=300,width=800) 
-p1.line(df.time,df.close) 
-#p1.line(df.time,df.long,color='green') 
-#p1.line(df.time,df.short,color='red') 
-p2 =  figure(height=100,width=800,x_range=p1.x_range) 
-p2.line(df.time,df.RSI) 
-#p3_0 = figure(height=100,width=800,x_range=p1.x_range) 
-#p3_0.line(df.time,df.trend) 
-p3_1 = figure(height=100,width=800,x_range=p1.x_range) 
-p3_1.line(df.time,df.sig_in,color='green') 
-p3_2 = figure(height=100,width=800,x_range=p1.x_range) 
-p3_2.line(df.time,df.sig_out,color='red') 
-p3_3 = figure(height=100,width=800,x_range=p1.x_range) 
-p3_3.line(df.time,df.sig_0) 
-p3_3_2 = figure(height=100,width=800,x_range=p1.x_range)  
-p3_3_2.line(df.time,df.sig_1) 
-p3_4 = figure(height=100,width=800,x_range=p1.x_range) 
-p3_4.line(df.time,df.signal) 
-p4 = figure(height=150,width=800,x_range=p1.x_range) 
-p4.line(df.time,df.r_0,color='lightgray') 
-p4.line(df.time,df.r_strat) 
-p4.line(df.time,df.r_fee,color='red') 
-p5 = figure(height=300,width=800,x_range=p1.x_range) 
-p5.line(df.time,df.r_0.cumprod(),color='lightgray') 
-p5.line(df.time,df.r_strat.cumprod()) 
-p5.line(df.time,df.R_net,color='red') 
-layout = column(p1,p2,p3_1,p3_2,p3_3,p3_3_2,p3_4,p4,p5) 
-show(layout) 
-</code> 
backtest_w_python.1742718714.txt.gz · Last modified: 2025/03/23 08:31 by bruno